
ISHEM’05_RRL 1

Failure Assessment

Robyn Lutz and Allen Nikora
November 9, 2005

ISHEM 2005

robyn.lutz/allen.p.nikora@jpl.nasa.gov
http://www.cs.iastate.edu/~rlutz

Some of the research described in this presentation was carried out at the Jet Propulsion
Laboratory, California Institute of Technology under a contract with the National Aeronautics and
Space Administration, and was funded by NASA’s Office of Safety and Mission Assurance. The

first author’s research is supported in part by National Science Foundation grants
CCR-0204139 and CCR-0205588.

ISHEM’05_RRL 2

Failure Assessment

 A failure is the inability of a system or component
to perform its required functions within specified
performance requirements [IEEE90].

 Failure assessment is the identification and
characterization of potential failure mechanisms in
systems under development and of actual failure
occurrences in operational systems.

ISHEM’05_RRL 3

Topics in Failure Assessment

Three questions to which developers and users
want accurate, precise answers are:

"How can the system fail?“

"What bad things will happen if the failure occurs?”

“How many failures will the system experience?”

ISHEM’05_RRL 4

SFMECA

(Software Failure Modes, Effects & Criticality Analysis)

• Requirements or design analysis technique

• Structured forward analysis of the ways software can
fail and the effects of these failure modes on the
system and environment

• Originated with hardware FMEA (MIL-STD 1629A,
1984)

• Later adapted for software

• Use has grown as system reliability becomes more
dependent on software

• Table-based & Guideword-driven (“timing wrong”)

ISHEM’05_RRL 5

Example SFMECA

Medium
Power allocation

exceeded
Heater OFF too

late
Timing

wrong
Heater

OFF

LowScience data lost
Heater OFF too

early
Timing

wrong
Heater

OFF

LowExperiment delayed
Heater ON too

late
Timing

wrong
Heater ON

Medium
Power allocation

exceeded
Heater ON too

early
Timing

wrong
Heater ON

CriticalitySystem Effect
Failure

Description
Failure
Mode

Data Item

ISHEM’05_RRL 6

SFTA

(Software Fault Tree Analysis)

• Requirements, design or code analysis technique

• Structured backward analysis of the contributing
causes to a root-node hazard or undesirable
event

• Feasibility of occurrence investigated

• Originated with hardware; later adapted for
software

• Use has grown as system reliability becomes
more dependent on software

• Tree-based & uses Boolean logic (AND/OR gates)

ISHEM’05_RRL 7

Example SFTA

ISHEM’05_RRL 8

Why use SFMECA/SFTA?

• JPL Software Development Process requires:

– Identification of possible failure modes

– Analysis of possible failures of software and of
interfacing software components,

– Design consideration of off-nominal behavior

– Removal of single-point failures

– Prioritization of requirements for design attention

• Cost recovered in failure and defect removal

• Broad choices in tool support

• Acceptance by system engineers

ISHEM’05_RRL 9

 Bi-directional Analysis

• Bi-directional Analysis combines SFMECA with SFTA
– SFMECA: forward analysis identifies failure modes

with unacceptable effects.
– SFTA backward analysis evaluates feasibility and

contributing causes of failure occurrence
– Used on Galileo, Cassini, Autonomous Rotorcraft
– NASA Software Safety Guidebook, NASA-GB-

8719.13B notes that SFTA works well in conjunction
with SFMEA

• Example:
– Requirement: “Software shall try closing latch valves

before firing pyro valves.”
– Finding: Race condition can occur if overpressure

occurs just prior to simultaneous enables at post-
orbital insertion, resulting in pyro valve firing

ISHEM’05_RRL 10

Other Uses of Bi-directional Analysis

• Product Lines

• Reuse of SFMECA/SFTA can be cost-effective
for similar systems [DehlingerLutz04,06]:

• Caveat: every system has its own peculiarities
and operational environment

• Security

• Attack trees are fault trees

• Root node is “Intrusion”

ISHEM’05_RRL 11

How many failures will the system experience?

• Software Reliability Engineering

– Software Reliability R(t): The probability of failure-
free operation of a computer program for a specified
time under a specified environment.

• Software Reliability Modeling

– Focuses on design defects rather than physical
wear-out

– Estimates and forecasts the reliability of software
systems

• Instrument code to assess risk of exposure to residual
faults [Nikora03], e.g., as system evolves

• Estimate defect content from measures of software
structure [Nikora04]

ISHEM’05_RRL 12

Experience on Mars Microprobe & EOS
Microwave Limb Sounder

• Exploited existing analysis: leaf nodes

involving software expanded into SFTAs

• Prioritized application: components responsible

 for fault detection, isolation, and response

• Integrated software/system analyses: looked for
software contributors to component-level failures

• Useful findings (developers implemented fixes):
– Sporadic hang-up

– Missing information (e.g., timer value

 in anomalous case)

– Loss of bus synchronization

– Verified adequacy of handling of key faults

ISHEM’05_RRL 13

What Worked

• Flexible use
– Use existing analyses as starting point
– Zoom-in/zoom-out targeting
– Dynamically choose next step

• Risk-driven
– Project concerns are priority
– Emphasize fault protection software
– Fill gaps in analyses of embedded software

• Integration of analyses
– Backward & forward analyses
– System and embedded software analyses

• Process adaptations
– Preserving traceability with tool support
– Project interaction for quick changes

ISHEM’05_RRL 14

Autonomous Rotorcraft Project, NASA Ames
Matt Whalley, project lead

Collaborative work with Ann Patterson-Hine,
Rob Harris, Doron Tal, Anupa Bajwa, Stacy Nelson

Using Bi-directional Analysis

ISHEM’05_RRL 15

Using Bi-directional Analysis

PROBLEM STATEMENT: Autonomous vehicles currently
have a limited capacity to diagnose and mitigate failures.
We need to be able to handle a broader range of
contingencies.

 A contingency is an event or condition (as an emergency)
that may but is not certain to occur [Merriam-Webster]
•Example: Requirement to take camera images of landing site for
autonomous landing.
•Contingencies

•Failures: imaging of landing site fails due to hardware or software
problem
•Operational situations of concern: lens cap left causes all-black
images
•Environmental situations of concern: strong crosswind interferes
with imaging

ISHEM’05_RRL 16

Using Bi-directional Analysis

1. Use SFTA, SFMECA, Obstacle Analysis to identify
contingencies that risk mission-critical functions in
Camera & Communication subsystems & identify
mitigation or recovery actions;

2. Model contingencies & autonomous recovery
actions using TEAMS (Testability And Engineering
Maintenance System, QSI) toolset

3. Analyze contingencies: TEAMS produces diagnostic
tree of checks needed to detect & isolate
contingency, identifies missing checks and recovery
actions

4. Code contingencies’ diagnosis & recovery behavior
in the rotorcraft’s planner scripting language (auto-
translation from TEAM’s XML output)

5. Verify contingency scripts with hardware-in-loop
simulation on the rotorcraft

ISHEM’05_RRL 17

• Improved failure assessment and contingency handling needed to

safely relinquish control of unpiloted vehicles to autonomous

controllers

• Improved failure assessment and autonomous contingency handling

needed to support extended mission operations

Relevance to NASA

